Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(3): 165-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462500

RESUMO

The chemical characterization of the heaviest elements at the farthest reach of the periodic table (PT) and the classification of these elements in the PT are undoubtedly crucial and challenging subjects in chemical and physical sciences. The elucidation of the influence of relativistic effects on their outermost electronic configuration is also a critical and fascinating aspect. However, the heaviest elements with atomic numbers Z ≳ 100 must be produced at accelerators using nuclear reactions of heavy ions and target materials. Therefore, production rates for these elements are low, and their half-lives are as short as a few seconds to a few minutes; they are usually available in a quantity of only a few atoms at a time. Here, we review some highlighted studies on heavy actinide and light transactinide chemical characterization performed at the Japan Atomic Energy Agency tandem accelerator facility. We discuss briefly the prospects for future studies of the heaviest elements.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Transactinídeos , Humanos , Elementos da Série Actinoide/química , Japão
2.
J Chromatogr A ; 1719: 464751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387151

RESUMO

Two new extraction chromatographic resins (ECRs) were prepared by impregnating two exotic diglycolamide (DGA) ligands (having three or four DGA moieties tethered to aza-crown ether scaffolds) dissolved in an ionic liquid onto an inert solid support. A room temperature ionic liquid (RTIL) was used for enhancing the performance of the ECRs. The ECR containing triaza-9-crown-3 functionalized with three DGA moieties (TAM-3-DGA), and tetraaza-12-crown-4 tethered with four DGA arms (TAM-4-DGA) were evaluated for the separation of Am3+ and Pu4+from nitric acid solutions. The resin capacity for Eu3+ was 9.52 mg/g and 7.24 mg/g for TAM-3-DGA and TAM-4-DGA resins, respectively. Similarly, the resin capacity for Pu4+was 7.44 mg/g and 5.72 mg/g for TAM-3-DGA and TAM-4-DGA resins, respectively. These maximum loading values corresponded to the formation of a 1:1 metal/ligand complex for the Eu3+ ion and a 1:2 metal/ligand complex for the Pu4+ ion. The sorption of Eu3+and Pu4+on the resins followed a chemisorption phenomenon on both resins. The sorbed Eu3+and Pu4+ions from the resin phase could be efficiently desorbed with complexing ligands such as guanidine carbonate/HEDTA and oxalic acid, respectively.


Assuntos
Elementos da Série Actinoide , Complexos de Coordenação , Éteres de Coroa , Líquidos Iônicos , Líquidos Iônicos/química , Ligantes , Elementos da Série Actinoide/química , Cromatografia , Íons
3.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897703

RESUMO

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Assuntos
Elementos da Série Actinoide , Metaloproteínas , Quelantes , Elementos da Série Actinoide/química , Minerais , Carbonato de Cálcio , Carbonatos
4.
J Inorg Biochem ; 238: 112034, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306597

RESUMO

During the wide utilization of the actinides in medicine, energy, military, and other fields, internal contaminations can profoundly endanger human health and public security. Chelating decorporation agents are the most effective therapies to reduce internal contamination that includes radiological and chemical toxicities. This review introduces the structures of chelating decorporation agents including inorganic salts, polyaminocarboxylic acids, peptides, polyphosphonates, siderophores, calixarenes, polyethylenimines, and fullerenes, and highlights ongoing advances in their designs and mechanisms. However, there are still numerous challenges that block their applications including coordination properties, pharmacokinetic properties, oral bioavailability, limited timing of administration, and toxicity. Therefore, additional efforts are needed to push novel decorporation agents with high efficiency and low toxicity for the treatment of internal contamination by actinides.


Assuntos
Elementos da Série Actinoide , Quelantes , Humanos , Quelantes/química , Elementos da Série Actinoide/química
5.
Chemphyschem ; 24(2): e202200516, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36149643

RESUMO

The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides' toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+ , Am3+ , Cm3+ , Bk3+ and Cf3+ . Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+ , where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.


Assuntos
Elementos da Série Actinoide , Plutônio , Actínio , Termodinâmica , Elementos da Série Actinoide/química , Água/química
6.
Biomolecules ; 12(11)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36358903

RESUMO

Speciation of actinides, and more particularly bioligand-binding ability, influences in vivo behavior. Understanding these interactions is essential for estimation of radiological dose and improvement of decorporation strategies for accidentally contaminated victims. Because the handling of actinides imposes overwhelming difficulties, in vitro assays carried out in physiological conditions are lacking and data regarding such interactions are scarce. In this study, we used a bi-compartmental and dynamic assay, providing physiological conditions (presence of inorganic ions, pH, temperature) to explore interactions between the actinides plutonium (Pu) and americium (Am) and endogenous (proteins transferrin and ferritin) or exogenous ligands (the chelating agent diethylenetriaminpentaacetic acid, DTPA). In this assay, an agarose gel represents the retention compartment of actinides and a dynamic fluid phase, the transfer compartment. The proportion of actinides transferred from static to dynamic phase reflects interactions between Pu/Am and various ligands. The results show differences in the formation of actinide-protein or actinide-DTPA complexes in physiologically relevant media depending on which ligand is present and where. We observed differential behavior for Pu and Am similar to in vivo studies. Thus, our assay may be used to determine the ability of various actinides to interact with specific proteins or with drug candidates for decorporation in complex physiologically relevant environments.


Assuntos
Elementos da Série Actinoide , Plutônio , Ligantes , Elementos da Série Actinoide/química , Amerício/análise , Plutônio/química , Ácido Pentético/química
7.
Sci Total Environ ; 851(Pt 2): 158160, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988601

RESUMO

Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S. commune, P. ostreatus, L. tigrinus) and soil-inhabiting fungi (L. naucinus) with Eu(III). In addition to determining the Eu(III) complexes in the sorption solution, the formed Eu(III) fungal species were characterized using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, chemical microscopy in combination with the time-resolved laser-induced fluorescence spectroscopy. Our data show that S. commune exhibited significantly higher Eu(III) binding capacity in comparison to the other fungi. Depending on fungal strain, the metal was immobilized on the cell surface, in the cell membranes, and within the membranes of various organelles, or in the cytoplasm in some cases. During the bioassociation process two different Eu(III) fungal species were formed in all investigated fungal strain. The phosphate groups of organic ligands were identified as being important functional groups to bind Eu(III) and thus immobilize the metal in the fungal matrix. The information obtained contributes to a better understanding of the role of fungi in migration, removal or retention mechanisms of rare earth elements and trivalent actinides in the environment.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Európio/química , Ligantes , Elementos da Série Actinoide/química , Espectrometria de Fluorescência , Micélio , Fosfatos , Solo
9.
J Chromatogr A ; 1635: 461728, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33250161

RESUMO

A dialkyl amide with branched alkyl group, viz. N,N-di(2-ethylhexyl)-propionamide (D2EHPrA) was used as the organic extractant in an extraction chromatographic resin prepared for the first time and evaluated for the separation of uranium from acidic feeds. The distribution coefficient measurements, carried out at varying HNO3 concentrations, indicated an increase in the UO22+ ion sorption with increasing nitric acid concentration. The UO22+ ion sorption kinetics and sorption isotherms with this resin were investigated in details. The column studies indicated that 8.3 mg of uranium could be loaded on a 2.1 cm3 column bed volume containing 0.35 g resin. Batch distribution data for other actinides such as Np4+ and Pu4+ indicated that the resin can also be used for effective separation of these metal ions from acidic feeds. Though the resin showed effectiveness for Np and Pu, detailed investigations dealing with macro concentrations of metal ions (in gm quantities) were restricted to uranium only due to hazardous nature of plutonium and limited availability of neptunium. The encouraging results reported in this work is an indication of the possible application of this resin for the recovery or pre-concentration of UO22+, Np4+ and Pu4+ ions from large volumes of aqueous solutions of moderate acidity.


Assuntos
Elementos da Série Actinoide/química , Amidas/química , Técnicas de Química Analítica/métodos , Cromatografia , Íons/química , Urânio/isolamento & purificação , Cinética , Ácido Nítrico/química , Radioatividade , Urânio/química
10.
Toxicol In Vitro ; 70: 105035, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33132172

RESUMO

The epithelial cell plays a key role in the transfer of radionuclides from lungs to blood following pulmonary exposure. The present study was designed to evaluate the transfer across human lung epithelial cells of various actinides (plutonium, americium and uranium), the influence of the physicochemical properties of plutonium compounds and of the chelating agent diethylene triamine pentaacetic acid (DTPA). To address this question, Calu-3 cells grown in a bicameral culture system were used. The integrity of the epithelial barrier was evaluated by measuring transepithelial electrical resistance (TEER) and the passage of a fluorescent marker, lucifer yellow. Activity measurement in basal compartment following periodic collection of culture medium was made from 2 h to seven days. To facilitate data handling and analysis, the statistical tool STATBIODIS was used. The results indicate differences in transfer for the different elements, and according to Pu physicochemical properties. Though to various extents, the chelating agent DTPA always increased the transfer of Pu and Am across the epithelial cells, without altering the integrity of the epithelial barrier. This in vitro cell culture model, by mimicking translocation of actinides from lungs to blood, can represent a valuable tool to further understand the underlying mechanisms and properties controlling this process.


Assuntos
Elementos da Série Actinoide/farmacologia , Quelantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Ácido Pentético/farmacologia , Elementos da Série Actinoide/química , Elementos da Série Actinoide/toxicidade , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quelantes/química , Quelantes/toxicidade , Células Epiteliais/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/citologia , Ácido Pentético/química , Ácido Pentético/toxicidade
11.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952278

RESUMO

Even 155 years after their first synthesis, Schiff bases continue to surprise inorganic chemists. Schiff-base ligands have played a major role in the development of modern coordination chemistry because of their relevance to a number of interdisciplinary research fields. The chemistry, properties and applications of transition metal and lanthanoid complexes with Schiff-base ligands are now quite mature. On the contrary, the coordination chemistry of Schiff bases with actinoid (5f-metal) ions is an emerging area, and impressive research discoveries have appeared in the last 10 years or so. The chemistry of actinoid ions continues to attract the intense interest of many inorganic groups around the world. Important scientific challenges are the understanding the basic chemistry associated with handling and recycling of nuclear materials; investigating the redox properties of these elements and the formation of complexes with unusual metal oxidation states; discovering materials for the recovery of trans-{UVIO2}2+ from the oceans; elucidating and manipulating actinoid-element multiple bonds; discovering methods to carry out multi-electron reactions; and improving the 5f-metal ions' potential for activation of small molecules. The study of 5f-metal complexes with Schiff-base ligands is a currently "hot" topic for a variety of reasons, including issues of synthetic inorganic chemistry, metalosupramolecular chemistry, homogeneous catalysis, separation strategies for nuclear fuel processing and nuclear waste management, bioinorganic and environmental chemistry, materials chemistry and theoretical chemistry. This almost-comprehensive review, covers aspects of synthetic chemistry, reactivity and the properties of dinuclear and oligonuclear actinoid complexes based on Schiff-base ligands. Our work focuses on the significant advances that have occurred since 2000, with special attention on recent developments. The review is divided into eight sections (chapters). After an introductory section describing the organization of the scientific information, Sections 2 and 3 deal with general information about Schiff bases and their coordination chemistry, and the chemistry of actinoids, respectively. Section 4 highlights the relevance of Schiff bases to actinoid chemistry. Sections 5-7 are the "main menu" of the scientific meal of this review. The discussion is arranged according the actinoid (only for Np, Th and U are Schiff-base complexes known). Sections 5 and 7 are further arranged into parts according to the oxidation states of Np and U, respectively, because the coordination chemistry of these metals is very much dependent on their oxidation state. In Section 8, some concluding comments are presented and a brief prognosis for the future is attempted.


Assuntos
Elementos da Série Actinoide/química , Complexos de Coordenação/química , Modelos Químicos , Bases de Schiff/química , Catálise , Técnicas de Química Sintética/métodos , Técnicas de Química Sintética/tendências , Complexos de Coordenação/síntese química , Ligantes , Estrutura Molecular , Oxirredução , Bases de Schiff/síntese química
12.
Nanoscale ; 12(3): 1339-1348, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859321

RESUMO

Lanthanides and actinides are used in a wide variety of applications, from energy production to life sciences. To address toxicity issues due to the chemical, and often radiological, properties of these elements, methods to quantify and recover them from industrial waste are necessary. When used in biomedicine, lanthanides and actinides are incorporated in compounds that show promising therapeutic and/or bioimaging properties, but lack robust strategies to target cancer and other pathologies. Furthermore, current decorporation protocols to respond to accidental actinide exposure rely on intravenous injections of soluble chelating agents, which are inefficient for treatment of inhaled radionuclides trapped in lungs. In recent years, nanoparticles have emerged as powerful tools in both industry and clinical settings. Because some inorganic nanoparticles are sensitive to external stimuli, such as light and magnetic fields, they can be used as building blocks for sensitive bioassays and separation techniques. In addition, nanoparticles can be functionalized with multiple ligands and act as carriers for selective delivery of therapeutic and contrast agents. This review summarizes and discusses recent progress on the use of nanoparticles in lanthanide and actinide chemistry. We examine different types of nanoparticles based on composition, functionalization, and properties, and we critically analyze their performance in a comparative mode. Our focus is two-pronged, including the nanoparticles free of lanthanides and actinides that are used for the detection, separation, or decorporation of f-block elements, as well as the nanoparticles that enhance the inherent properties of lanthanides and actinides for therapeutics, imaging and catalysis.


Assuntos
Elementos da Série Actinoide , Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Elementos da Série Actinoide/química , Elementos da Série Actinoide/uso terapêutico , Animais , Humanos , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
13.
Nucl Med Rev Cent East Eur ; 22(2): 56-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482557

RESUMO

BACKGROUND: 44Sc is becoming attractive as a PET radionuclide due to its decay characteristics. It can be produced from 44Ca present in natural calcium with 2.08% abundance. MATERIALS AND METHODS: The targets were mostly prepared from natural CaCO3 or metallic calcium in the form of pellets. After irradiation they were dissolved in 3 M hydrochloric acid and 44Sc was separated from excess of calcium by precipitation of scandium hydroxide using ammonia. Alternatively, targets were dissolved in 11 M hydrochloric acid and 44Sc was separated by extraction chromatography on UTEVA resin. As the next step, in both processes 44Sc was further purified on a cation exchange resin. Initially, the separation procedures were developed with 46Sc as a tracer. Gamma spectrometry with a high purity germanium detector was used to determine the separation efficiency. Finally, the CaCO3 pellet with 99.2% enrichment in 44Ca was activated with protons via 44Ca(p,n)44Sc nuclear reaction. RESULTS: Altogether twenty two irradiations and separations were performed. The working procedures were developed and the quality of separated 44Sc solution was confirmed by radiolabeling of DOTATATE. The chemical purity of the product was sufficient for preclinical experiments. At the end of around 1 hour proton beam irradiation of CaCO3 pellet with 99.2% enrichment in 44Ca the obtained radioactivity of 44Sc was more than 4.8 GBq. CONCLUSION: 44Sc can be produced inexpensively with adequate yields and radionuclidic purity via 44Ca(p,n)44Sc nuclear reaction in small cyclotrons. The recovery yield in both investigated separation methods was comparable and amounted above 90%. The obtained 44Sc was pure in terms of radionuclide and chemical purity, as shown by the results of peptide radiolabeling.


Assuntos
Elementos da Série Actinoide/química , Precipitação Química , Hidróxidos/química , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/isolamento & purificação , Escândio/química , Escândio/isolamento & purificação , Urânio/química , Carbonato de Cálcio/química , Ciclotrons , Marcação por Isótopo , Radioquímica/instrumentação
14.
Phys Chem Chem Phys ; 21(29): 16017-16031, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31304940

RESUMO

Enterobactin (Ent) is a typical siderophore with strong iron affinity. Its dynamics in its intact form and holo state remains to be studied to understand its role in the in vivo behavior of metal ions and to facilitate its potential application in drug design and environmental remediation. Here, we report molecular dynamics simulations of both Ent enantiomers and their complexes with key actinides (Am3+, Cm3+, Th4+, U4+, Np4+ and Pu4+) to study the folding equilibria of Ent enantiomers and their binding affinity with actinides. For comparison, the ferric cation was also considered. In their neutral state, both enantiomers may exist in their folded and extended states in the aqueous phase with the former more stable owing to the favorable cation-π, π-π, and H-bond interactions. A helicity preference was observed in the folded states of Ent enantiomers, which was solidified when binding with Fe3+ while disrupted when binding with actinides. Upon binding with metal ions, the dynamics of Ent enantiomers exhibited dependence on the metal ions, and appeared to be more flexible in An3+/4+-Ent complexes than in Fe3+-Ent complexes. The conformational analysis and the energy decomposition of M3+/4+-Ent complexes indicated that their distinct conformational variations and dynamic fluxionality are enthalpy driven behaviors and dependent on the nature of the loaded metal ions. The Fe3+-Ent complexes had a more compact conformation, while the relatively loosely bound An3+/4+-Ent complexes allowed solvent water molecules to access the first coordination shell of An3+/4+ and weaken the interaction between An3+/4+ and Ent. This work is expected to enrich our knowledge of the folding equilibria of Ent enantiomers and their An3+/4+-Ent complexes, and contribute to communities that concern the in vivo and in vitro behaviors of Ent enantiomers and actinides.


Assuntos
Elementos da Série Actinoide/química , Enterobactina/química , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Estereoisomerismo , Termodinâmica
15.
J Chromatogr A ; 1598: 58-66, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987785

RESUMO

Two novel extraction chromatographic resins (EC), termed as RL-1 and RL-2, were prepared by impregnating two benzene-centered tripodal iglycolamide ligands (Bz-T-DGA) containing different spacer groups where the ligands are termed as L-1 and L-2, respectively. They were employed for the uptake of actinide and fission product ions, viz. Am3+, Eu3+, UO22+, Np4+, Pu4+, Sr2+, and Cs+, from acidic feeds. Weight distribution coefficient (Kd) values were measured by the batch method and the loaded metal ions were back extracted using a 0.01 M EDTA solution at pH 4. Kinetic modeling of the sorption data of Am(III) on both resins suggested pseudo-second order rate kinetics with rate constants of 1.68 × 10-6 and 2.47 × 10-6 g/cpm.min for the resins containing L-1 and L-2, respectively. Sorption isotherm studies indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) experimentally determined saturation uptake capacities of 6.02 ± 0.11 and 5.49 ± 0.14 mg per g of RL-1 and RL-2 resins, respectively. As the batch uptake study results appeared encouraging, column studies were also carried out using both resins. The resin reusability data indicated a marginal change in the Kd values for the RL-1 resin up to three repeat runs beyond which a steady decrease of the Kd value was seen. On the other hand, in the case of RL-2 a steady decrease in the Kd values was observed for three repeat runs beyond which there was marginal change.


Assuntos
Elementos da Série Actinoide/metabolismo , Benzeno/química , Cromatografia/instrumentação , Glicolatos/química , Modelos Químicos , Elementos da Série Actinoide/química , Cinética , Ligantes
16.
J Chromatogr A ; 1587: 155-165, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30591247

RESUMO

An automated separation-direct analysis scheme has been developed to determine both the concentration and isotopic composition of a suite of elements down to the low picogram level in a complex silicon-based matrix. With the ultimate goal of performing rapid analysis of materials with non-natural isotopic compositions, RAPID (Rapid Analysis of Post-Irradiation Debris) consists of a high-pressure ion chromatography system directly coupled to an inductively coupled plasma mass spectrometer. The RAPID method achieves matrix exclusion and direct online analysis of the elementally separated components, yielding precise isotopic compositions for up to 40 elements in less than one hour per sample. When combined with isotope dilution, this approach shows the potential to yield elemental concentrations with low uncertainties, providing a rapid analytical method that encompasses group I and II metals, transition metals, refractory metals, platinum group metals, lanthanides, and actinides. The method development, robustness, sensitivity, uncertainties, and potential applications in nuclear and environmental measurements will be discussed in this paper.


Assuntos
Elementos da Série Actinoide/química , Cromatografia/métodos , Poluentes Ambientais/análise , Isótopos/química , Elementos da Série dos Lantanídeos/análise , Limite de Detecção , Pressão , Reprodutibilidade dos Testes , Solo/química , Fatores de Tempo
17.
Chem Commun (Camb) ; 54(62): 8645-8648, 2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30022209

RESUMO

As an extension of actinide-rotaxane complexes from uranium to transuranium, we report the first crystal structure of a neptunium-rotaxane complex, NRCP-1, in which an interwoven neptunium(v)-rotaxane coordination network incorporating a mechanically-interlocked [c2]daisy chain unit is promoted via the simultaneous coordination of cucurbituril (CB6) and axle molecules in [2]pseudorotaxane to NpV.


Assuntos
Complexos de Coordenação/química , Netúnio/química , Rotaxanos/química , Urânio/química , Elementos da Série Actinoide/química , Complexos de Coordenação/síntese química , Modelos Moleculares , Conformação Molecular
18.
J Chromatogr A ; 1564: 94-101, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29934093

RESUMO

An extraction chromatographic resin material containing Aliquat 336 as the liquid anion exchanger extractant and Chromosorb W as the solid support was prepared and tested for the uptake of UO22+, Np4+, Pu4+, and Pu3+ from nitric acid feed solutions. The resin beads were characterized by thermogravimetry/differential thermogravimetry (TG/DTG) and scanning electron microscopy (SEM) surface morphology analysis. The uptake trend for the metal ions from 3 M HNO3 was found to be Pu4+ >> Np4+ >> UO22+ > Pu3+ which clearly followed the trend of their ionic potentials. In view of the significant difference in the uptake of Np4+ with respect to those of UO22+ and Pu3+, a separation scheme was developed for the selective separation of Np from feeds containing U, Np and Pu in nitric acid. The purity of the product was verified by alpha spectrometry.


Assuntos
Elementos da Série Actinoide/química , Netúnio/isolamento & purificação , Compostos de Amônio Quaternário/química , Resinas Sintéticas/química , Extração em Fase Sólida/métodos , Adsorção , Cromatografia , Íons , Cinética , Análise Espectral , Temperatura
19.
J Environ Radioact ; 190-191: 89-96, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29775842

RESUMO

The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium Kd's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 µg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes.


Assuntos
Carbonato de Cálcio/química , Magnésio/química , Modelos Químicos , Neodímio/química , Elementos da Série Actinoide/química , Adsorção , Concentração Osmolar , Difração de Raios X
20.
PLoS One ; 12(10): e0186370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023595

RESUMO

This work presents a comparison of three autoradiography techniques for imaging biological samples contaminated with actinides: emulsion-based, plastic-based autoradiography and a quantitative digital technique, the iQID camera, based on the numerical analysis of light from a scintillator screen. In radiation toxicology it has been important to develop means of imaging actinide distribution in tissues as these radionuclides may be heterogeneously distributed within and between tissues after internal contamination. Actinide distribution determines which cells are exposed to alpha radiation and is thus potentially critical for assessing absorbed dose. The comparison was carried out by generating autoradiographs of the same biological samples contaminated with actinides with the three autoradiography techniques. These samples were cell preparations or tissue sections collected from animals contaminated with different physico-chemical forms of actinides. The autoradiograph characteristics and the performances of the techniques were evaluated and discussed mainly in terms of acquisition process, activity distribution patterns, spatial resolution and feasibility of activity quantification. The obtained autoradiographs presented similar actinide distribution at low magnification. Out of the three techniques, emulsion autoradiography is the only one to provide a highly-resolved image of the actinide distribution inherently superimposed on the biological sample. Emulsion autoradiography is hence best interpreted at higher magnifications. However, this technique is destructive for the biological sample. Both emulsion- and plastic-based autoradiography record alpha tracks and thus enabled the differentiation between ionized forms of actinides and oxide particles. This feature can help in the evaluation of decorporation therapy efficacy. The most recent technique, the iQID camera, presents several additional features: real-time imaging, separate imaging of alpha particles and gamma rays, and alpha activity quantification. The comparison of these three autoradiography techniques showed that they are complementary and the choice of the technique depends on the purpose of the imaging experiment.


Assuntos
Autorradiografia/métodos , Elementos da Série Actinoide/química , Partículas alfa , Animais , Autorradiografia/instrumentação , Pulmão/patologia , Músculo Esquelético/patologia , Ratos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...